# generate a linear kernel
kfun = vanilladot()
# generate a Laplacian kernel function with sigma = 1
kfun = laplacedot(sigma=1)
# generate a Gaussian kernel function with sigma = 1
kfun = rbfdot(sigma=1)
# set kern=kfun when fitting a kerndwd object
data(Haberman)
Haberman$X = scale(Haberman$X, center=TRUE, scale=TRUE)
lambda = 10^(seq(-3, 3, length.out=10))
m1 = kerndwd(Haberman$X, Haberman$y, kern=kfun,
qval=1, lambda=lambda, eps=1e-5, maxit=1e5)
Run the code above in your browser using DataLab